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INTRODUCTION

The development of very high strength and stiffness filaments, along
with the development nf the filament winding manufacturing techniques, nffer
the promise of nbtaining efficient structural materials in the form nf filament
reinforced matrices for a variety nf applicatinns. An initial utilization of
such materials is the current filament-wnund, glass-reinforced plastic in-
ternal pressure vessel. In these vessels, the stiff high strength glass fibers
are imbedded in a plastic matrix which performs the functinns of fiber sup-
port and protection. The design of such vessels has been largely gnverned
by isotensonid pressure vessel concepts wherein the structural role nf the ma-
trix material is neglected. In these structures, fibers are nriented so that
all filaments are stressed uniformly and identically insnfar as possible. Fonr
such an application, the desirable direction of materials development is clearly
toward an improved strength to density ratio nf the filament. However, new
applications for filament reinforced materials will have stiffness requirements,
either from deflection limitations nr compressive stability consideratinns.

For these applications, the matrix characteristics are of importance and in
addition to the ultimate fiber strength, other failure mondes must be considered.
These include buckling and excessive shear stress in the matrix material.

A study to determine the influence of fiber and matrix properties, as well as
fiber orientatinn, upon the stiffness, internal stress distribution and buckling
strength of filament reinfnorced materials is described in this paper. The re-
sults indicate desirable geometry for specified constituents and desirable con-
stituent properties for specified applications. Hollow glass fibers as well as
high modulus glass fibers and plastic binders are treated.




ANALYSIS

The aim of the analyses described herein is to determine the influence
of constituent properties and geometry upon the failure of filament reinforced
materials. The primary emphasis is placed upon the utilization of such mater-
ials for compressive applications inasmuch as this appears to be an area of
potential application which has received relatively little attention. The first
portion of this analysis section describes the method developed in ref. 1 and
used herein to obtain the elastic constants of composites which contain fibers
all oriented in a single direction. Next, these results are applied to filament
wound laminates Lo evaluate the elastic constants of such materials. With the
elastic propertiies defined as functions of the constituent properties and the
laminate geometry, the elastic stability of a filament wound cylindrical shell
under axial compression is treated. Finally, the average stresses ia individual
laminae are studied to evaluate potential shear failure modes. These various
stages of the analysis are described individually in the following sections.

Elastic Constants for Uniaxially Stiffened Composites

The structural analysis of a non-homogeneous material such as filament
wound glass reinforced plastic can be approached in several ways. Many studies
have been based upon the so-called '"netting' analysis which neglects the matrix
material completely, and considers a net-like structure as he tensile load car-
rying structure. For compressive loads this technique is clearly inadequate
and a more reasonable representation is to use an effective homogeneous but
anisotropic material having properties which duplicate the average response
of the actual inhomogeneous and isotropic material. This problem has been
studied in ref, 1 where a fibrous composite consisting of a matrix reinforced
by uniaxially oriented solid or hollow fibers was studied. Two cases were con-
sidered. In the first, the fibers are of identical cross section and form an
hexagonal array in the transverse plane, and in the second, the fibers may
have different diameters, but all have the same ratio of inner to outer dia-
meter and are randomly located in the transverse plane. In both cases the
composite is macroscopically homogeneous and transversely isotropic (these
concepis will be discussed below) and has five elastic moduli. The problem
then is to find expressions for the effective elastic moduli of the reinforced
materials in terms of the elastic moduli and the geometric parameters of its
constituents.

In fiber reinforced mateiials the ratio of length to fiber diameter is
usually very large. Accordingly, fiber end conditions need only be considered
in theSt. Venant sense. Consequently, it is sufficient to consider a verylarge
cylindrical specimen of reinforced material, with fibers in the generator
direction extending from base to base. If the average response of the material
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is considered. the composite properties can be represented by an effective
homogeneous material having a Hooke's law defined by:

Oi = oyl €

where (5—1 and € . are the average values of the stress and strain com-
ponents over the voI]ume region, and the c;;  are the effective elastic constants.
This definition of effective elastic moduli is phycially plausible; it is, however,
not very useful because in order to find averages, a solution for the stress field
has first to be found. which for this p:soblem is a complex task. An equivalent
and more fruitful approach is to define the effective elastic moduli in terms of
strain energy and to bound the strain energy for simple applied average stress

The general elastic features of the material are characterized by a
principal elastic axis in ihe fiber direction and a transverse plane having
isotropic properties. This stems from the fact that for the hexagonal fiber
array, the reinforced material has hexagonal symmetry and is thus also trans-
versely isotropic {see, e.g. ref. 2, p. 160) and for random fiber arrangement,
a transverse isotropy is assumed. The stress-strain relation for transversely
isotropic materials is thus the appropriate one and it may be written in terms
of five elastic moduli. It is possible to select five independent moduli such
that for specified states of stress and strain oaly one of these moduli will
appear in the strain energy function. Thus, the bounds on strain energy from
the minimum principles of the theory of elasticity can be used directly to
yield bounds on the elastic moduli. Elastic constants computed by the bounding
methods of ref. 1 are utilized herein in the evaluation of stresses and deflections
of laminates of composite materials.

The upper and lower bounds for three of the required constants (longi-
tudinal Young's modulus, El, and shear modulus, Gjp, and Poisson's ratio in
the lamina plane. VZI) coincide. For the fourth constant, the transverse
Young's modulus, E;,, the average of the upper and lower bounds has been used
in the subsequent analyses. The fifth constant which may be taken as the trans-
verse shear modulus, G3, or Poisson's ratio in the transverse plane, 1/23,
are not utilized in the laminate analysis which is essentially two dimensional.

Elastic Constants for Laminates

With the elastic constants of each plate defined, the properties of the
laminate can be determined as a function of the individual plate characteristics.

3




This problem is treated in this section. This analysis plus the relationship
between he elastic properties of the lamina or composite as a function of the
properties and geometry of the constituents as obtained previously, enables
the selection of desirable constituent characteristics. The analytical model
will consider each layer or lamina as an orthotropic homogeneous material
with defined elastic properties. It will be assumed that there are a large
number of layers so that coupling between extensional and bending stresses
may be neglected. Shear deformations in the plane of the plate will be treated,
while those through the thickness will be neglected. First, the stress strain
relations in one layer will be defined for arbitrary angles. Then the elastic
constants in principle directions of the laminate will be evaluated. Finally,
the constants of the laminate will be evaluated for arbitrary angles.

The problem of stresses in laminates has been studied extensively (see
for example, ref. 3, 4, 5) and the methods used can be conveniently applied
to obtain the desired elastic constants. A description of the analysis as used
here is presented in appendix A, and the coordinate nomenclature for the
laminate is shown in fig. 1. The analysis has been used to evaluate laminate
constants primarily for four composite materials; namely, a reference E-
glass reinforced epoxy {material I}, a hollow E-glass fiber reinforced epoxy
(material IIj, a high modulus glass reinforced epoxy {material II}, and a high
modulus binder reinforced with solid E-glass fibers (material IV),. The pro-
perties of the constituents and the uniaxially reinforced composites for these
four combinations a.e listed in Table I, A binder volume fraction of three-
tenths has been used for all materials. Each of these four composites has
been considered in laminate form with a two directional symmetric laminate
with varying angle between layers, a two directional longitudinal and trans-
verse laminate with varying proportions of thickness in each direction, and a
triaxial laminate with equal 120° angles between layers. The latter has the
properties of an isotorpic material in the laminate plane.

The elastic constants for the two directional symmetric layup are
shown in figs. 2 and 3 as a function of the semi-angle, 8 , between the two
directions. In fig. 2, it can be seen that for small values of 8 , the longi-
tudinal modulus, Ep, is improved substantially by an increase in fiber
modulus, E., and only slightly by an increase in binder modulus, E,. For
large values of © , the reverse situation occurs. Note also that the longi-
tudinal modulus, E., for laminates at 90° minus the given angle. Thus
equivalent conclusions can be drawn about transverse laminate moduli. The
lowest curve presents the results for hollow fiber laminates having fibers
with a ratio, ®< , of inner to outer radius of 0.8. Note that the density of
this material is also substantially lower than that of all the other materials,
Thus, to make a comparison of extensional stiffness on an equal weight basis
the hollow fiber curve {material II) should be increased by 42.1%. Also shown

4




are the longitudinal Ysung's moduli for each material for the isotropic
laminate (0%, 60° and 120° layups;. In fig. 3, the in-plane shear moduli,
Gi,T, are presented. All the shear moduli have maximum values when

the fibers are oriented at 45° to the applied shear stresses. The values

for the isotropic laminate are indicated. Also the values for 0°-90° layups
are shown on the figure. These values are independent of the fraction in each
direction and are equal tothe value for uniaxial fiber orientation. Again dif-
ferences between the materials considered are substantial and variable with
geometry. It is apparent that an evaluation of the relative merits of the im-
provement of various properties requires consideration of a specific
application. This is treated in the following section. The effect of fraction
of material oriented in the load direction upon the longitudinal stiffness in a
0°-90°, or longitudinal-transverse, laminate is shown in fig. 4.

Buckling of Filament Wound Cylindrical Shells

Because fibrous composites are generally anisotropic materials, the
evaluation of their efficiency for a given structural application is more com-
lex than for a isotropic material., That is, since one simple property of the
material does not adquately define its performance, it is necessary to per-
form an analysis which includes the effect of all the material constants, Thus,
the significance cf the elastic constants defined in the previous section will be
determined by studying a filament wound cylinder loaded in axial compression
with elastic buckling as the failure criterion. A classical buckling analysis
will be used {ref. 6! and is described in appendix B.

The principal resulis are plotted in fig. 5 in the form of buckling stress
as a function of the helix angle with respect to the longitudinal axis. All shells
considered are of equal weight so that the shells of material II are of greater
thickness than all others. The results for material II have been multiplied by
the ratio of material II thickness to mater:ial I thickness so that the comparison
is on a load carrying basis for equal weight. The shells have all helical windings,
The results are symmetric with respect to 45° and show maximum loads for
fibers at about 20° or 70° to the longitudinal axis. For the reference E-glass
reinforced plastic, material I, the variation with respect to the lamina angle
is relatively small. Other fiber geometries have also been treated. For cir-
cumferential and longitudinal windings the highest buckling load was achieved
for one half the fibers in each direction. This load was equal to the buckling
load for helical windings at @ = 145° This result was observed for four
materials considered. For material I, the range of values of buckling stress
for the 0°-90° windings ranged from 11. 4 to 12,3 ksi. The triaxial or isotropic
winding was also considered. For all materials this was found to ve the highest
buckling stress, as shown in Table II.



TABLE I
Isotropic Buckling Loads

Material cr
I 16. 5 ksi
I 15, 0%
IIX 22,3
v 20. 6

*Adjusted fcr density difference

Note that for material I, the improvement of the buckling load for isotropic
windings over the highest buckling load for helical windings is larger than
the variation obtained over the range of all other goemetries considered.
This result was also obtained for all other materials treated. This effect

of geometry is in some ways disappointing, That is, given the opportunity

to orient material to achieve maximum buckling resistance to a uniaxial load,
the best choice appears to be a random or isotropic array. Secondly, all
other geometric arrays seem to have a small effect on structural behavior
relative to each other. One note of caution is in order; namely, that a small
deflection, classical analysis has been used as tue basis of this study. However,
the experiments of ref, 7 indicated reasonable agreement with a classical
analysis for shells of ithese dimensions. The shells are of relatively small
radius to thickness ratio and filament wound shells are relatively free of
initial imperfections in the shell shape so that there is justification for using
this type of analysis.

As for the variation in fiber geometry, the hollow fibers are seen to
present no improvement over the solid fibers for this application. This is in
marked contrast with the results obtained for column buckling and other uni-
axial orientation applications. {See ref. 8.} A more significant effect is ob-
served for the use of high modulus glass fibers., Also it is seen that the highest
results for helical laminates are achieved with the use of a high modulus
binder material. This large increase in buckliag strength is achieved by
doubling the modulus of the reference epoxy binder, an approach which appears
to warrant experimental investigation. Doubling the modulus of an epoxy by
the addition of micron size particles of alumina or calcium carbonate is rela-
tively simple and has been done experimentally with about 30% by volume,
particle material. The effect of variation of the constituent moduli upon the
buckling of a helically wound shell of 15° wrap angle is shown in fig. 6. The
benefits of varying fiber modulus are greater than the benefits for the same
percentage increase of binder modulus, but the quantity is much mocre sus-
ceptible to control.



Ncte that all the computed buckling stresses are low relative to the
compressive streagth of the material.

For comparison, the effective buckling stress for an equal weight
magnesium shell corrected for the density of difference, would be 41.5 ksi,
which is a much higher fraction of the material strength. It appears that
proper utilization of glass reinforced plastics for compression buckling
applications requires a change in geometry, to a sandwich construction for
example, in order to utilize the high compressive strength of the material
and compete with a metallic shell.

Laminza Stresses

The consideration of failure modes for fibrous composiies requires
consideration of the transverse and shear stresses in addi.ion to the stresses
in the fiber direction. This is of relatively greater importance for compres-
gsive applications, than for tensile applications because the '"netting'' action
which can resist tensile loads will not be adequate to resist compressive loads
without the relatively rigid support of the binder material. For simple loading
conditions, like uniaxial tension of a symmetric laminate, interlaminar stresses
around the edges of the laminate transmit shear stresses between the layers.
These stresses are edge stresses and are not readily susceptible to analysis,
They do introduce shear stresses into each lamina which must be considered
as a potential cause of failure. The direction parallel to the fibers appears
to have the lowest resistance to shear stresses and thus attention will be con-
centrated on shear stresses in that direction. The stresses in the lamina
plzne transverse to the fiber direction can produce shear stresses through the
lamina thickness which are a potential cause of shear failure. The three
components of the lamina stresses in the principal directions of each lamina
are thus the stresses of interest, These are evaluated by the procedure of
appendix A,

The shear stress in the laminate plane parallel and normal to the fibers
is shown in fig. 7 for materials I and Il as a function of the lamina angle. The
stress is normalized with respect to the average applied extensional stress.
it is seen that these stresses vary considerably with geometry and that they
can represent a large fraction of the applied stress. The effect of constituent
properties is more clearly indicated in fig. 8 where the influence of the binder
modulus is studied for a 15° laminate. It is seen that the increase in binder
modulus which is desired to improve buckling resistance results in an increased
lamina shear stress. However, this variation is much less than the variation
produced by changing the lamina angle. The mode of failure associated with
these high shear stresses requires some experiment study. However, an
indication of what may be encountered is indicated by the compu .cd resulis,
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indicating the importance of the various failure modes as shown in fig. 9.

Here it has been assumed that a lamina shear stress or a transverse shear
stress of 5 ksi shall be considered failure. The allowable axial stress for

a cylindrical shell of radius to thickness ratio of 145 is shown in the figure.

It is seen that each of the failure modes occurs in a given geometry range.

A change in material properties to those of material III changes the buckling
stress, but has a minor influence on the stress level or region of importance
for the shear modes. Failures due to transverse shear have been experimentally
observed. (See ref. 7.) Failures due to lamina and interlaminar shear may
interact considerably. The effect of geometry appears to be more substantial
than that due to elastic material properties. In the area of shear stress failures
it appears that more precise analytical tools must be used to define failure
criteria ., but it is clear from these approximate studies that materials of im-
proved shear strength are essential for high performance compressive appli-
cations of reinforced plastics.



CONCLUSIONS

The application of glass reinforced plastic laminates to compressive
structural applications has been studied. The influence of fiber and matrix
elastic moduli and geometry has been evaluated in three major areas. First
the elastic constants of laminates have been evaluated with the major con-
clusion being that wide variations in any one elastic constant can easily be
acheived and that evaluation of the significance of these properties requires
the definition of a specific application. The second phase of the study treated
a filament wound cylindrical shell in axial compression as the typical appli-
cation to provide the evaluation of the various material properties encountered
in the first phase. The use of relationships between the composite properties
and the constituent properties made possible the treatment of the influence of
changes in fiber or binder modulus upon the structural performance of the
composite laminate. The elastic stability studies showed that wide changes
in filament orientation had a small effect on composite performance and that
the isotropic laminate was clearly the most efficient for the application
considered. Hollow and solid E-glass fibers were shown to be essentially
similar in performance, while improvement of either the fiber or binder
modulus was shown to have a significant and favorable effect upon the
buckling stress. All buckling stresses were relatively low when compared
to the compressive strength of these materials and it appears that a change
in geometry such as the use of sandwich construction is a beneficial area
of study. The average stresses in individual laminae were also studied.
Primary consideration was given to shear induced failure modes. The in-
plane shear stress was found to be more sensitive to fiber orientation
than to matrix or fiber properties. Variation of constituent properties and
geometry can vary the failure mode to either shell buckling, transverse
shear failure or in-plane shear failure. The interactions of these modes
requires experimental study, but the stress magnitudes indicate the need
for materials of improved shear strength.

It appears that rational methods exist, not only for evaluating
structural performance of a given material, but also for the significant
purpose of indicating the nature of the change in constituent properties
desirable to produce improved structural composites.



APPENDIX A
Laminate Stress Analysis

The analysis of stresses in a laminate follows that of ref. 4 but is
modified to evaluate elastic constans and simplified to neglect coupling
between bending and extension, The laminate is considered to have a large
number of symmetric laminae so that the bending stiffness and extensional
stiffness are related in the same fashion as they are for an homogeneous
material. This also results in bending and extensional stresses being un-
coupled. Transverse shear is also neglected.

The stress-strain law for each layer relative to the lamina principal
axes is:

o = o€ i,j = 1,2,3 (A1)
O'i = stress
.y = strain

= elastic constants
- and a repeated index denotes summation

For the orthotropic lamina of a filament wound material:

i1 12 0
ij - €12 €22 0 (A2)
Q 0 C33

where these stiffnesses are related to the conventional elastic constants by

(k)

Ey
1-¥x 12
(k)
{k) E2
CZZ = (.A 3)
L- 1/éfk)1€z(k)
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where the Lij are the elements of the inverse of the Ti' matrix,

Consider a laminate of n layers subject to in-plane loads. Since
transverse shear and coupling between bending and extension have been
neglected the strains in all layers will be the same and the average stresses,

fi , will be:

n

= = (k)
T; = Z G 4
k=1
n
v (k) ~
T, = 3 ¢i; €5 % (A7)
k=1
4= i A
where t) = fraction of toial thickness in kth layer and
n
O - (k)
Ay = Z G5ty
k=1
Equations (A7) may be rewritten
€. - B.. T. | (A8)

where the Bij are the elements of the inverse of the Aij matrix.

This is the solution for lamina strains as a function of applied
stresses, .

From Equation (A8) the desired elastic constants can be defined
as follows:

1
E = =
L —

Bn
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k k
o, W, ()

k
1- 7/12( )‘/21(k)

(k)

O
Pt
W)

1

0
n
[

I

(k)
€33 = 2Gyp,

E1 = Young’s modulus in fiber direction

E5 = Youn'gs moudlus normal to fiber direction

G,, = Shear modulus in fiber plane

71, = Ratio of strain inthe 1 direction to strain in the 2

direction for uniaxial stress in the 2 direction

The elastic constants in the principal lamina e directions are defined
by:

0‘i = Cij ej : (A4)

where the overbar denotes quantities referenced to the laminate axes. These
constants can be obtained from the lamina constants by coordinate transforma-
tions of the stress and strain as follows:

O’l ] Tij 63 (A5)
€ _
A
where
cosze sinze 2sinBcos©
T.. = [T] = sinZ © cost© -25in@ cos ©
1 -5in@ cos® sind®cos@ cosl@ -sinyp
Substitution of (A5) and (A4) into (Al) yields:
i T Lim “mn Tnj (A6)
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E =
T =
B,2
1
G = =
LT =
B33 (A9)
v _ B
TL -~ “S§
By
v . DL
LT =
22

The stresses in the kth lamina are now given by

= (kj _ = (k)=
o, = <y '€j . (A10)

and the stress components within any lamina referenced to axes making an
angle, ©¢ , with the longitudinal and transverse axes are given by:

& - 1 F® (A1)
i ij
where the Tij contain w=¢ in place of 6 .

The elastic constants of equation (A9) and the stresses of equation

(All) have been evaluated for various geometries. The results are discussed
in the text,
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APPENDIX B

Elastic Stability Filament Wound
Cylindrical Shells Under Axial Compression

The stability analysis of filament wound cylindrical shells is a
small deflection, classical analysis of anisotropic shells. The work
utilizes the results of ref. 6. Under the assumptions that transverse
shear strain is negligible and that each bending stiffness is related tc
the appropriate extensional stiffness in the same fashion that bending
and extensional stiffness of homogeneocus materials are related, the
buckling stress, O, , is obtained from equ. A4 of ref. 6 as:

cr
4, &
2 B IATANYA
i s GFIG) - 2 (E)RIGTF +
6, =m (q)'l('-n"é-,_ {l <n m| Tt \E )R/ \m
E_ (B1)
R g
tt (R E q L (3@
7] —
("‘)[z,. wt( )(m :m rz ( )J
where
By = o +20-9,.) 2=
1= Vst (" TL L-r) E,
£ E;
B, = L(fu _,y v &
2 2 G‘T T") (—/l:l’ -VTL E‘_
m = longitudinal wave number
n = circumferential wave number
h = shell thickness
a = shell length
R = shell radius

For long cylinders, the longitudinal wave number may be treated
as a continuous variable and the buckling stress can be analytically
minimized with respect to it. Thus set:

)6,

Am =0
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This results in the following equation:

m+mz("‘)<«)<w‘)§§£"z"_[< )(' LT L)]‘Z :417"(’)“(321) =0

The buckling stress is then determined by selecting an even value
of n (excluding n = 2, which is column buckling}, finding the associated
m value from equ. (B2) and using these values in equ., {Bl). The buckling
stress is the minimum value of &, obtained for the admissible n values.

For the case where n is large, or for an approximate or lower
limit solution, 1t is possible to minimize analytically by treating both

wave numbers as continuous variables. This is most easily done by
treating m and n/m as the independent variables. Then set

3G B

Equations (Bl), (Bd) and {B4) can be mampulated to yield:

M==ai ke G -z ErXE)zJJK
(B5)

O‘:lF‘R‘

- - —‘; aw‘(“ Z("') /677"‘(1)( )

z
(2 ‘- 1‘#(3 & - B
m Iar‘* (3) [g Bz = (B6)

Equations {(B5) and (Bb6) give an analytical minimum expression
for the buckling stress when both wave numbers are treated as continuous
variables. Equations {(Bl) and {B2) were used to numerically minimize
with respect to the circumferential wave number to obtain the results
described in the body of the paper.
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Table 1

Properties of Fibrous Composites

Material
Constituent Property I I II1 v
Fiber modulus, E, 10%psi 10.5 10.5  16.0  10.5
Fiber Poissons ratin, V¢ 0.20 0.20 0.20 0.20
Binder modulus, E}, 100psi 0.5 0.5 0.5 1.0
Binder Poissons ratio, Vy, 0. 35 0. 35 0. 35 0. 35
Fiber hollowness ratio, o{_ 1.0 0.8 1.0 1.0
Uniaxial Composite Properties
(Vp = 0. 3)

Longitudinal Youngs Modulus, E;,10%si | 7.50  2.80  11.35  7.66
Transverse Youngs Modulus

upper bound, E,j, 100psi 2.66  1.40 2.93  4.20

lower bound, E 51, 10psi 1.98  1.28 2.11 3. 40

average,E>,106,psi 2,32 1.34 2.52 3. 80
In-Plane Shear Modulus, Gy, 106psi 0.853 0.519 0.911 1.440
In-Plane Poissons ratio, V,f 0.238  .241  0.238  .239
Transverse Plane Poissons ratio,'l/23

upper bound 0. 524 . 209 0. 549 .465

lower bound .363 .130 .374 . 338

average .444 .170 . 562 .402
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FIGURE CAPTIONS (B. W. Rosen)

JUN

Coordinate System for Laminate Stress Analysis. Symmetric laminate
shown.

Longitudinal Youngs Modulus of Symmetric Glass Reinforced Plastic
Laminates as a Function of the Angle Between the Laminae Principal
Axes and the Longitudinal Direction. Results for a triaxial or isotropic
laminate are also shown.

Shear Modulus of Symmetric Glass Reinforced Plastic Laminates as
a Function of the Angle Between the Laminae Principal Axes and the
Longitudinal Direction. Results for a triaxial or isotropic laminate
and for a longitudinal-transverse laminate are also shown.

Longitudinal Youngs Modulus of a Longitudinal-Transverse Laminate
as a Function of the Thickness Fraclion Oriented with the Fiber Axis

in the Longitudinal Direction.

Critical Buckling Stress of Helically Wound Glass Reinforced Plastic
Cylinders Under Axial Compression.

*Computations for material Il are based on equal

weight (thus R/t = 102) and resulting stress is

multiplied by the ratio of material II thickness to

material I thickness so that the comparison is on

a load basis.

Effect of Variation in Constituent Moduli on Buckling Stress of Cylinder
(R/t = 145) in Axial Compression.Material is a Triaxial or Isotropic
Laminate and the Reference Cylinder is of Material 1.

Shear Stress on Principal Elastic Axes of Laminae of a Symmetric
Laminate Subjected to a Uniaxial Longitudinal Stress,

Influence of Binder Modulus Upon Lamina Shear Stress for a Symmetric
159 Laminate Subjected to a Uniaxial Longitudinal Stress,

Maximum Allowable Stress in Helically Wound Cylindrical Shells

(R/t = 145) for Three Different Failure Modes: a) Cylinder Buckling;
b) Lamina or In-Plane Shear Failure at 5 ksi Average Stress; ¢) Trans-
verse Shear Failure at 5 ksi Average Stress.

19




ol I

Al




o

o

LONGITUDINAL YOUNGS MODULUS OF LAMINATE,E, , 10 PSI

MAT. E¢

I 10.5

o 10.5
(a=0.8)

oo 16.0

a4 10.5

Ep

0.5 x10° PsI

0.5

0.5
1.0

\ -1
-~ \ISOTROPIC -
VALUES
] I I l | J
O 15 30 45 60 75 90

LAMINA ANGLE, 6 , DEGREES




3.5~

~ LAMINATE SHEAR MODULUS,G 1,108 PSI

3.0

N
o
I

ISOTROPIC
VALUES

N
@]

1.5

1.0
:'/ |
05 : | S—— _ o |
| /L 0°-90° VALUES
0 l I | 1 L
o) 15 30 45 60 75 -90

LAMINA ANGLE, 8, DEGREES




LONGITUDINAL YOUNGS MODULUS OF LAMINATE, E, ,I08 PSI

o S
T 1

®

(4))

ISOTROPIC
E VALUES

II
0 | ] | | ]
o) .2 .4 .6 .8 1.0

FRACTION OF MATERIAL IN LONGITUDINAL
| DIRECTION , t, .




 CRITICAL BUCKLING STRESS,KSI

N
O
|

o

(o))

H

N

® O
I !

)
|

o) ] | | | | J
0 15 30 45 60 75 90

LAMINA ANGLE , 6 , DEGREES




RATIO OF BUCKLING STRESS TO REFERENCE VALUE

1.8

1.6

E¢ CONSTANT
Ep VARYING

E(, CONSTANT
Ef VARYING

0 | ] \

J .

0 | 2
RATIO OF YOUNGS MODULUS TO REFERENCE VALUE

3



30

IS

n

2/

< )9 2 - | @)

21 ) *S3XV TWdIONI¥d NO SS3ULS HV3HS QIZITYWHON

LAMINA ANGLE , 8 , DEGREES




_
0

|
o | T

L/ 213 ‘SIXV WIONIMd NO SS3HILS HV3HS AIZIMYNHON

BINDER YOUNGS MODULUS, Eb,IOG PSI




MAXIMUM ALLOWABLE AXIAL STRESS, o, ,KSl

22

20

18

)

| 4

/ \*
/

|

\

\
I )
|
\

/7 N\

\

|

\
|
\
|
\
\

N\

e
\
\

| 2| —
\ \1
| Ol— "BUCKLING Z‘
IN-PLANE
8l SHEAR
TRANSVERSE
SHEAR
(o) I
4l Ty = 5 KSI
2
0 | L1 | | |
O 15 30 45 60 75 90

LAMINA ANGLE,6, DEGREES




